Cache-efficient data structures in Rust require careful consideration of hardware characteristics and memory access patterns. I’ll share my experience implementing these techniques in production systems.
Cache line alignment stands as a critical optimization technique. Modern CPUs fetch memory in fixed-size blocks called cache lines, typically 64 bytes. When multiple threads access variables in the same cache line, it leads to false sharing and performance degradation.
#[repr(align(64))]
struct AlignedCounter {
value: AtomicU64,
_pad: [u8; 56]
}
impl AlignedCounter {
fn new() -> Self {
Self {
value: AtomicU64::new(0),
_pad: [0; 56]
}
}
fn increment(&self) {
self.value.fetch_add(1, Ordering::SeqCst);
}
}
Structure of Arrays (SoA) pattern improves cache utilization compared to Array of Structures (AoS). By grouping similar data together, we maximize cache line usage and reduce memory fetches.
// SoA Implementation
struct ParticleSystem {
positions: Vec<Vector3>,
velocities: Vec<Vector3>,
accelerations: Vec<Vector3>,
masses: Vec<f32>
}
impl ParticleSystem {
fn update(&mut self, dt: f32) {
for i in 0..self.positions.len() {
self.velocities[i] += self.accelerations[i] * dt;
self.positions[i] += self.velocities[i] * dt;
}
}
}
Custom memory layouts enable fine-grained control over data placement. I’ve implemented a block allocator that maintains cache-aligned memory blocks:
struct CacheAlignedAllocator {
blocks: Vec<Box<[u8; 64]>>,
free_list: Vec<usize>
}
impl CacheAlignedAllocator {
fn new() -> Self {
Self {
blocks: Vec::new(),
free_list: Vec::new()
}
}
fn allocate(&mut self) -> Option<&mut [u8; 64]> {
if let Some(index) = self.free_list.pop() {
Some(&mut self.blocks[index])
} else {
self.blocks.push(Box::new([0; 64]));
Some(self.blocks.last_mut().unwrap())
}
}
}
Prefetching helps reduce cache misses by loading data before it’s needed. While Rust doesn’t provide direct prefetch intrinsics, we can use unsafe blocks to access hardware capabilities:
use std::arch::x86_64::_mm_prefetch;
use std::arch::x86_64::_MM_HINT_T0;
pub fn prefetch_sequential<T>(data: &[T], ahead: usize) {
let ptr = data.as_ptr();
unsafe {
for i in 0..data.len() {
if i + ahead < data.len() {
_mm_prefetch(
ptr.add(i + ahead) as *const i8,
_MM_HINT_T0
);
}
// Process current item
}
}
}
Linear memory access patterns significantly improve cache performance. Sequential traversal allows the CPU to predict and prefetch data effectively:
struct RingBuffer<T> {
data: Vec<T>,
head: usize,
tail: usize,
capacity: usize
}
impl<T> RingBuffer<T> {
fn new(capacity: usize) -> Self {
Self {
data: Vec::with_capacity(capacity),
head: 0,
tail: 0,
capacity
}
}
fn push(&mut self, item: T) -> Result<(), T> {
if self.is_full() {
return Err(item);
}
self.data.push(item);
self.tail = (self.tail + 1) % self.capacity;
Ok(())
}
fn pop(&mut self) -> Option<T> {
if self.is_empty() {
return None;
}
let item = self.data.remove(self.head);
self.head = (self.head + 1) % self.capacity;
Some(item)
}
fn is_empty(&self) -> bool {
self.head == self.tail
}
fn is_full(&self) -> bool {
self.tail - self.head == self.capacity
}
}
These techniques require careful benchmarking in your specific use case. I’ve found that cache-line awareness can improve performance by 20-50% in data-intensive applications.
When implementing cache-aware structures, consider these practical tips:
Track cache misses using performance counters. Most CPUs provide hardware counters for monitoring cache behavior. Tools like perf on Linux help identify bottlenecks.
Keep hot data together. Frequently accessed fields should be placed in the same cache line to minimize memory fetches.
struct HotColdSplit {
// Hot data accessed frequently
hot: Box<HotData>,
// Cold data accessed rarely
cold: Box<ColdData>
}
struct HotData {
counter: AtomicU64,
flags: AtomicU32,
state: AtomicU8
}
struct ColdData {
creation_time: DateTime<Utc>,
description: String,
metadata: HashMap<String, String>
}
Consider SIMD operations. Modern CPUs support vector operations that can process multiple data elements simultaneously:
use std::arch::x86_64::{__m256, _mm256_add_ps, _mm256_load_ps, _mm256_store_ps};
unsafe fn vector_add(a: &[f32], b: &[f32], c: &mut [f32]) {
let mut i = 0;
while i < a.len() {
let va = _mm256_load_ps(a[i..].as_ptr());
let vb = _mm256_load_ps(b[i..].as_ptr());
let vc = _mm256_add_ps(va, vb);
_mm256_store_ps(c[i..].as_mut_ptr(), vc);
i += 8;
}
}
Use array chunking for better cache utilization:
struct ChunkedArray<T> {
chunks: Vec<Box<[T; 64]>>,
len: usize
}
impl<T: Default + Copy> ChunkedArray<T> {
fn new() -> Self {
Self {
chunks: Vec::new(),
len: 0
}
}
fn push(&mut self, value: T) {
let chunk_index = self.len / 64;
let offset = self.len % 64;
if offset == 0 {
self.chunks.push(Box::new([T::default(); 64]));
}
self.chunks[chunk_index][offset] = value;
self.len += 1;
}
}
Remember memory ordering affects cache behavior. Rust’s atomic operations provide different memory ordering guarantees:
use std::sync::atomic::{AtomicUsize, Ordering};
struct CacheAwareCounter {
value: AtomicUsize
}
impl CacheAwareCounter {
fn increment_relaxed(&self) -> usize {
self.value.fetch_add(1, Ordering::Relaxed)
}
fn increment_release(&self) -> usize {
self.value.fetch_add(1, Ordering::Release)
}
fn get_acquire(&self) -> usize {
self.value.load(Ordering::Acquire)
}
}
These cache-aware techniques form the foundation for high-performance Rust data structures. The key lies in understanding hardware characteristics and applying appropriate optimizations based on your specific use case.