java

Testing Adventures: How JUnit 5's @RepeatedTest Nips Flaky Gremlins in the Bud

Crafting Robust Tests: JUnit 5's Repeated Symphonies and the Art of Tampering Randomness

Testing Adventures: How JUnit 5's @RepeatedTest Nips Flaky Gremlins in the Bud

When diving into the world of Java testing, there’s a nifty feature in JUnit 5 that doesn’t get enough credit: @RepeatedTest. It’s like that trusty backpack you never knew you needed until you were halfway on a hike, snugly holding all those essentials for an error-free adventure. Essentially, it lets you run the same test multiple times, which is pretty cool when you’re trying to ensure your test cases are tough as nails. It’s especially handy for when you’re dealing with flaky tests – you know, those sneaky tests that fail without a valid reason or when randomness is a factor.

Why would you want to repeat a test, you ask? Imagine you’re testing a web app, and there’s this link that’s all touchy — it sometimes flips out with environmental errors, but after a click or two, it’s all sunshine and rainbows. Instead of your test throwing a fit every time and declaring a failure, you replay the scene a few times. Eventually, it learns to keep calm and carry on, giving you more reliable results. And there’s more! Consider scenarios where your code has to deal with unpredictable load times, like switching pages or hitting links that take a mystery tour through cyberspace. Running repeated tests helps you gather a nice average load time, handy for future thresholds.

Plugging @RepeatedTest into JUnit 5? As easy as pie. Picture this:

import org.junit.jupiter.api.RepeatedTest;
import static org.junit.jupiter.api.Assertions.assertEquals;

public class RepeatedTestExample {

    @RepeatedTest(3)
    public void testAddition() {
        int actual = 2 + 3;
        int expected = 5;
        assertEquals(expected, actual);
        System.out.println("Test executed");
    }
}

Voilà, the testAddition method will run thrice — thanks to @RepeatedTest(3). This annotation is like a DJ playing your favorite track on loop.

But wait, there’s a cherry on top: custom display names. They’re like gift tags for your tests, perfect for logging and debugging. Check it:

@RepeatedTest(value = 3, name = "Test run {currentRepetition} of {totalRepetitions}")

It’s like personalizing each test run with its own little title, which is especially useful when scrolling through a gazillion logs.

Now, let’s talk lifecycle callbacks. Think of @BeforeEach and @AfterEach as loyal sidekicks to your tests, brushing up before the party starts and tidying up after everyone’s gone. Every repetition calls them again, which can be a double-edged sword. It’s all good if each test needs a fresh start, but what if they don’t?

Picture this: setup code for things only needed once, or cleanup stuff that shouldn’t be repeated. A workaround? A clever flagging system. Here’s how you do it:

import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.RepeatedTest;
import static org.junit.jupiter.api.Assertions.assertEquals;

public class RepeatedTestExample {

    private boolean setupDone = false;
    private boolean cleanupDone = false;

    @BeforeEach
    void beforeEach() {
        if (!setupDone) {
            System.out.println("Before all tests");
            setupDone = true;
        }
    }

    @AfterEach
    void afterEach() {
        if (!cleanupDone) {
            System.out.println("After all tests");
            cleanupDone = true;
        }
    }

    @RepeatedTest(3)
    public void testAddition() {
        int actual = 2 + 3;
        int expected = 5;
        assertEquals(expected, actual);
        System.out.println("Test executed");
    }
}

But when things get wild, like failing a couple of times with assertEquals, you can wield the failureThreshold option. This is your secret weapon against repeated failures: if you decide a crisis is worth a threshold of two failed runs out of ten, it can skip the rest after reaching said threshold.

import org.junit.jupiter.api.RepeatedTest;
import static org.junit.jupiter.api.Assertions.fail;

public class RepeatedTestExample {

    @RepeatedTest(value = 10, failureThreshold = 2)
    public void testAddition(RepetitionInfo repetitionInfo) {
        if (repetitionInfo.getCurrentRepetition() % 2 == 0) {
            fail("Simulated failure");
        }
        int actual = 2 + 3;
        int expected = 5;
        assertEquals(expected, actual);
        System.out.println("Test executed");
    }
}

Now, one must tread carefully in parallel execution land. @Execution(SAME_THREAD) is your guiding star here, ensuring sequential test execution on the same thread so that the failure threshold behaves predictably.

import org.junit.jupiter.api.Execution;
import org.junit.jupiter.api.RepeatedTest;
import static org.junit.jupiter.api.Assertions.fail;

@Execution(org.junit.jupiter.api.ExecutionMode.SAME_THREAD)
public class RepeatedTestExample {

    @RepeatedTest(value = 10, failureThreshold = 2)
    public void testAddition(RepetitionInfo repetitionInfo) {
        if (repetitionInfo.getCurrentRepetition() % 2 == 0) {
            fail("Simulated failure");
        }
        int actual = 2 + 3;
        int expected = 5;
        assertEquals(expected, actual);
        System.out.println("Test executed");
    }
}

The final word about @RepeatedTest? It’s your hammer in the toolbox of testing, helpful for pounding out inefficiencies and silencing flaky gremlins. Whether your tests resemble a shaky bridge or face inconsistent hurdles, this feature empowers you to craft more resilient, rugged tests.

Keywords: JUnit 5, RepeatedTest, Java testing, flaky tests, test automation, software testing, testing lifecycle, RepetitionInfo, failureThreshold, same thread execution



Similar Posts
Blog Image
Sprinkle Your Java Tests with Magic: Dive into the World of Custom JUnit Annotations

Unleashing the Enchantment of Custom Annotations: A Journey to Supreme Testing Sorcery in JUnit

Blog Image
Mastering Micronaut Testing: From Basics to Advanced Techniques

Micronaut testing enables comprehensive end-to-end tests simulating real-world scenarios. It offers tools for REST endpoints, database interactions, mocking external services, async operations, error handling, configuration overrides, and security testing.

Blog Image
Fortifying Your Microservices with Micronaut and Resilience4j

Crafting Resilient Microservices with Micronaut and Resilience4j for Foolproof Distributed Systems

Blog Image
The Hidden Java Framework That Will Make You a Superstar!

Spring Boot simplifies Java development with convention over configuration, streamlined dependencies, and embedded servers. It excels in building RESTful services and microservices, enhancing productivity and encouraging best practices.

Blog Image
Taming Java's Chaotic Thread Dance: A Guide to Mastering Concurrency Testing

Chasing Shadows: Mastering the Art of Concurrency Testing in Java's Threaded Wonderland

Blog Image
Project Panama: Java's Game-Changing Bridge to Native Code and Performance

Project Panama revolutionizes Java's native code interaction, replacing JNI with a safer, more efficient approach. It enables easy C function calls, direct native memory manipulation, and high-level abstractions for seamless integration. With features like memory safety through Arenas and support for vectorized operations, Panama enhances performance while maintaining Java's safety guarantees, opening new possibilities for Java developers.